3x^2+5x-6=

Simple and best practice solution for 3x^2+5x-6= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+5x-6= equation:


Simplifying
3x2 + 5x + -6 = 0

Reorder the terms:
-6 + 5x + 3x2 = 0

Solving
-6 + 5x + 3x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-2 + 1.666666667x + x2 = 0

Move the constant term to the right:

Add '2' to each side of the equation.
-2 + 1.666666667x + 2 + x2 = 0 + 2

Reorder the terms:
-2 + 2 + 1.666666667x + x2 = 0 + 2

Combine like terms: -2 + 2 = 0
0 + 1.666666667x + x2 = 0 + 2
1.666666667x + x2 = 0 + 2

Combine like terms: 0 + 2 = 2
1.666666667x + x2 = 2

The x term is 1.666666667x.  Take half its coefficient (0.8333333335).
Square it (0.6944444447) and add it to both sides.

Add '0.6944444447' to each side of the equation.
1.666666667x + 0.6944444447 + x2 = 2 + 0.6944444447

Reorder the terms:
0.6944444447 + 1.666666667x + x2 = 2 + 0.6944444447

Combine like terms: 2 + 0.6944444447 = 2.6944444447
0.6944444447 + 1.666666667x + x2 = 2.6944444447

Factor a perfect square on the left side:
(x + 0.8333333335)(x + 0.8333333335) = 2.6944444447

Calculate the square root of the right side: 1.6414763

Break this problem into two subproblems by setting 
(x + 0.8333333335) equal to 1.6414763 and -1.6414763.

Subproblem 1

x + 0.8333333335 = 1.6414763 Simplifying x + 0.8333333335 = 1.6414763 Reorder the terms: 0.8333333335 + x = 1.6414763 Solving 0.8333333335 + x = 1.6414763 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = 1.6414763 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = 1.6414763 + -0.8333333335 x = 1.6414763 + -0.8333333335 Combine like terms: 1.6414763 + -0.8333333335 = 0.8081429665 x = 0.8081429665 Simplifying x = 0.8081429665

Subproblem 2

x + 0.8333333335 = -1.6414763 Simplifying x + 0.8333333335 = -1.6414763 Reorder the terms: 0.8333333335 + x = -1.6414763 Solving 0.8333333335 + x = -1.6414763 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = -1.6414763 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = -1.6414763 + -0.8333333335 x = -1.6414763 + -0.8333333335 Combine like terms: -1.6414763 + -0.8333333335 = -2.4748096335 x = -2.4748096335 Simplifying x = -2.4748096335

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.8081429665, -2.4748096335}

See similar equations:

| (a+9)(a+5)= | | (5y+8)-(5+4y)=12 | | 4-2+8-8i= | | 280+(x*0.2)=x | | log(7-x)=.5 | | 1-1/3x_1/2(x-3/5 | | 2x/74 | | 5x^2-12x-29=5 | | 1-1/3x1/2(x-3/5 | | 3(x-3)4=7 | | -8-3i+8-8i= | | 144=-12{x+5} | | 89+4=n+7 | | 7(t-4)+7t=7(2t+4)-12 | | -8(1+3v)=2(v-4) | | (4y^5)^3/(2y^9)^-3 | | 512x^3+125=0 | | .24y-.8=.14y+1-.5y | | 15+4a-7=8a | | 7(x+2)-10=9x+6 | | x+1.7=3.3 | | log(x1/x2)=0.37 | | -8(7x-7)=-8(1+3x) | | t(t+1)=3t^2+5 | | 6+2(x-3)=3(2x+1) | | 3n-21=22+2n | | x^2-6xy+9y^2-2y+1=0 | | 15+10x-5-x-1-6=6+x+2 | | 5x+8+3x+2=90 | | 25.7/.31 | | -25.7/.31 | | ln(3x-1)+ln(x-3)=ln(3) |

Equations solver categories